Dieses KI-Tutorial für Anfänger dient zum Erlernen der Grundlagen der künstlichen Intelligenz. In diesem Tutorial für künstliche Intelligenz für Anfänger lernen Sie verschiedene Grundlagen der künstlichen Intelligenz kennen, z. B. KI, Geschichte der KI, Arten der KI, Anwendungen der KI und weitere Konzepte zur KI.
Was ist KI?
KI (Künstliche Intelligenz) ist die Fähigkeit einer Maschine, kognitive Funktionen wie Menschen auszuführen, wie z. B. Wahrnehmen, Lernen, Denken und Lösen von Problemen. Der Maßstab für KI ist die menschliche Ebene in Bezug auf Argumentation, Sprache und Vision.
Einführung in AI Levels
- Schmale KI : Eine künstliche Intelligenz wird als schmal bezeichnet, wenn die Maschine eine bestimmte Aufgabe besser ausführen kann als ein Mensch. Die aktuelle Forschung der KI ist jetzt hier
- Allgemeine KI : Eine künstliche Intelligenz erreicht den allgemeinen Zustand, wenn sie jede intellektuelle Aufgabe mit der gleichen Genauigkeit ausführen kann wie ein Mensch
- Starke KI : Eine KI ist stark, wenn sie Menschen bei vielen Aufgaben schlagen kann
Heutzutage wird KI in fast allen Branchen eingesetzt, was allen Unternehmen, die KI in großem Maßstab integrieren, einen technologischen Vorsprung verschafft. Laut McKinsey hat AI das Potenzial, im Einzelhandel einen Wert von 600 Milliarden Dollar zu schaffen und im Bankgeschäft im Vergleich zu anderen Analysetechniken einen um 50 Prozent höheren Mehrwert zu erzielen. In den Bereichen Transport und Logistik liegt der potenzielle Umsatzsprung um 89 Prozent höher.
Wenn ein Unternehmen KI für sein Marketingteam verwendet, kann es konkret alltägliche und sich wiederholende Aufgaben automatisieren, sodass sich der Vertriebsmitarbeiter auf Aufgaben wie Beziehungsaufbau, Lead-Pflege usw. konzentrieren kann. Ein Firmenname Gong bietet einen Konversations-Intelligence-Service. Jedes Mal, wenn ein Vertriebsmitarbeiter einen Anruf tätigt, transkribiert und analysiert das Gerät den Chat. Der VP kann AI-Analysen und Empfehlungen verwenden, um eine Gewinnstrategie zu formulieren.
Kurz gesagt, AI bietet eine Spitzentechnologie für den Umgang mit komplexen Daten, die von einem Menschen nicht verarbeitet werden können. AI automatisiert redundante Jobs, sodass sich ein Mitarbeiter auf die Aufgaben mit hohem Mehrwert konzentrieren kann. Wenn KI in großem Maßstab implementiert wird, führt dies zu Kostensenkung und Umsatzsteigerung.
Eine kurze Geschichte der künstlichen Intelligenz
Künstliche Intelligenz ist heute ein Schlagwort, obwohl dieser Begriff nicht neu ist. 1956 beschloss eine Gruppe von Avantgarde-Experten mit unterschiedlichem Hintergrund, ein Sommerforschungsprojekt über KI zu organisieren. Vier kluge Köpfe leiteten das Projekt; John McCarthy (Dartmouth College), Marvin Minsky (Harvard University), Nathaniel Rochester (IBM) und Claude Shannon (Bell Telephone Laboratories).
Der Hauptzweck des Forschungsprojekts bestand darin, „jeden Aspekt des Lernens oder jedes andere Merkmal der Intelligenz anzugehen, das im Prinzip so genau beschrieben werden kann, dass eine Maschine hergestellt werden kann, um es zu simulieren“.
Der Vorschlag der Gipfel enthalten
- Automatische Computer
- Wie kann ein Computer so programmiert werden, dass er eine Sprache verwendet?
- Neuronennetze
- Selbstverbesserung
Es entstand die Idee, dass intelligente Computer geschaffen werden können. Eine neue Ära begann voller Hoffnung – künstliche Intelligenz.
Art der künstlichen Intelligenz
Künstliche Intelligenz kann in drei Teilbereiche unterteilt werden:
- Künstliche Intelligenz
- Maschinelles Lernen
- Tiefes Lernen
Maschinelles Lernen
Maschinelles Lernen ist die Kunst der s tudy von Algorithmen , die lernen aus Beispielen und Erfahrungen .
Maschinelles Lernen basiert auf der Idee basiert , dass es existieren einige Muster in den Daten , die wurden identifiziert und verwendet für zukünftige Prognosen .
Der Unterschied zu Hardcodierungsregeln besteht darin, dass die Maschine selbst lernt, solche Regeln zu finden.
Tiefes Lernen
Deep Learning ist ein Teilbereich des maschinellen Lernens. Tiefes Lernen bedeutet nicht, dass die Maschine tieferes Wissen lernt. Dies bedeutet, dass die Maschine verschiedene Ebenen verwendet, um aus den Daten zu lernen. Die Tiefe des Modells wird durch die Anzahl der Ebenen im Modell dargestellt. Das Google LeNet-Modell für die Bilderkennung zählt beispielsweise 22 Ebenen.
Beim tiefen Lernen erfolgt die Lernphase über ein neuronales Netzwerk. Ein neuronales Netzwerk ist eine Architektur, bei der die Schichten übereinander gestapelt sind.
KI vs. maschinelles Lernen
Die meisten unserer Smartphones, täglichen Geräte oder sogar das Internet verwenden künstliche Intelligenz. Sehr oft werden KI und maschinelles Lernen von großen Unternehmen, die ihre neuesten Innovationen vorstellen möchten, synonym verwendet. Maschinelles Lernen und KI unterscheiden sich jedoch in einigen Punkten .
KI – Künstliche Intelligenz – ist die Wissenschaft des Trainings von Maschinen zur Ausführung menschlicher Aufgaben. Der Begriff wurde in den 1950er Jahren erfunden, als Wissenschaftler begannen zu untersuchen, wie Computer Probleme selbst lösen können.